Lockinex

Key Clamp

Lockinex Key Clamps are malleable iron castings, streamlined in appearance and providing considerable versatility in their application. Used with Lockinex Tubing, they create robust and durable installations, which are aesthetically pleasing. A wide range of rigid modular structures are possible with standard clamps. They are easily and quickly assembled without the need of special skills or tools.

Lockinex UK Ltd manufacture their own brand of key clamp which are manufactured to relevant British standards with malleable cast iron fittings to BS EN 1562:2012 and hot dip galvanising to BS EN ISO 1461:2009, so you can be sure to receive a quality product. Handrail tube is manufactured to BS EN 10255:2004 and galvanised to BS EN 10240:1998.

Lockinex Key Clamps are available in a wide range of configurations, fitting five different diameters of tubing. The diversity allows the construction of Guardrails, Handrails, Storage \& Racking, Machine Guards \& much more.

Lockinex branding for

Handrail infill panels

We stock a range of hot dip galvanised mesh infill panels for use with our 48.3 mm key clamp handrail system. All panels are designed to be used with upright post centres at 1495 mm to achieve $0.36 \mathrm{kN} / \mathrm{m}$ general duty loading with 1100 mm approx. finish height.

Code

MSH-1363X418
MSH-1363×836
MSH-1363x972

Guardrail infill panels from stock
$1363 \times 418 \mathrm{~mm}, 50 \times 50 \times 3 \mathrm{~mm}$ mesh, 8 mm rod frame, galvanised finish. $1363 \times 836 \mathrm{~mm}, 50 \times 50 \times 3 \mathrm{~mm}$ mesh, 8 mm rod frame, galvanised finish. $1363 \times 972 \mathrm{~mm}, 50 \times 50 \times 3 \mathrm{~mm}$ mesh, 8 mm rod frame, galvanised finish.

PGKC-900-8 (48.3mm) PGKC-1200-8 (48.3mm)

1000mm tall, 900 mm wide infill panel 1000 mm tall, 1200 mm wide infill panel

Fencing infill panels used in conjuction with Lockinex key clamps and PGKC ready made key clamp kits. Standard infill panels can be easily cut down to suit site conditions and have a hot dip galv. finish. Posts shown in drawing are not included. Powder coating to your choice of RAL colour available.

PGKC-Corner-8 (48.3mm)

Ready made corner post ready to accept PGKC infill panels. Utilises the Lockinex key clamp range. 48.3 mm dia. post.

PGKC-Middle-8 (48.3mm)

Ready made middle post ready to accept PGKC infill panels. Utilises the Lockinex key clamp range. 48.3 mm dia. post.

PGKC-End-8 (48.3mm)

Ready made end post ready to accept PGKC infill panels. Utilises the Lockinex key clamp range. 48.3 mm dia. post.

Galvanised shown - Powder Coated also available.

All measurements in (mm)

Ready made key clamp

Galvanised shown - Powder Coated also available.

All measurements in (mm)

Galvanised shown - Powder Coated also available.

Galvanised Tube

Tube Diameter (mm) Wall Thickness (mm)

Lengths

Two tubes can be joined to create an incline of 11-30 degrees. Joins the angled rail from a ramp or steps to a vertical post on a landing. Starts an angled rail from top of a first post.

Provides 90 ' T ' connection between two tubes. Used for the joint between an end post and lower rail(s) when handrail is straight and level. Also for a top ' T ' joint on a guardrail. Cannot join tube in top of ' T ', use A4 when this is required.

Provides the same function as the A02. However, this clamp can be retro fitted to an existing installation so disassembly is not required. The clamp can be split in half by removal of the pins and fitted to the existing structure.

Variable angle clamp, tubes can be connected between angles of 30 to 60 degrees. Use for an angled top rail joint to vertical post on stairs. Used in conjunction with A23 for the lower rail(s). Can be used for diagonal braces for racking etc.

Provides a 90 degree ' T ' connection between two tubes. Used for the joint between a top rail and a vertical post. Allows tubes to be joined in the top part of the ' T '. When used in guardrailing the A22 will compliment this for lower rail(s).

Allows angles between $85-180$. Used to change direction of rails in the same plane. Consider the A07 as an alternative.
 post of a handrail. Also used for turning the rails around a 90 corner.

Two tubes can be joined with an angle range between 15-60 degrees. Joins the angled rail from a ramp or steps to level rails on a landing. Starts an angled rail from top of a first post. Can be used for obtuse angle change in a handrail.

Provides a rigid joint for two tubes of the same dia. Joints to be 150 mm to the nearest support. Do not use for joining two tubes subject to extreme loads, i.e. a vertical post member supporting a guardrail. Use A9 for a streamline joint.

Provides a streamline flush joint in two tubes of the same diameter with a maximum wall thickness of 3.2 mm . Joints to be 150 mm to the nearest support. Not for joining tubes that are subject to extreme loads, or where a direct tensile load is applied.

A four holed plate provides a rigid fixing for handrails that terminate on walls. Ideal for securing garment railing structures to ceilings etc. Not to be used as structural fixings for supporting a vertical post on guardrails. Use A12 for this.
${ }^{* *}$ Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Tube size	A	B	C	D	E	F
$\mathbf{5}$ (A) $=\mathbf{2 6 . 9 m m}$ dia.	112 76 64 76 11 8 $\mathbf{6}$ (B) $=\mathbf{3 3 . 7 m m}$ dia. 128 88 80 88 14 10 $\mathbf{7 (C)}=\mathbf{4 2 . 4 m m}$ dia. 144 102 80 88 14 10 $\mathbf{8 (D)}=\mathbf{4 8 . 3 m m}$ dia. 156 114 92 88 14 10 $\mathbf{9}(\mathbf{E})=\mathbf{6 0 . 3 m m}$ dia. 165 126 98 130 18 8					

Provides a structural base plate for the support of a vertical post typically for a guardrail. Two socket screws give a rigid structural fixing. Recommended that the fixing down bolts be in line with the applied load. (i.e 90 to the rails).
**Procure product prior to pre-drilling holes in structures as some dimensions may vary

Base plate with integrated toe board attachment. Primarily for guardrails that require more stringent safety requirements. 150 mm high steel plate can be attached in sections by fixing through slotted holes. Refer to company post centres and current legislation on installation.**Procure prior to pre-drilling holes in structures as dimensions may vary.

Tube
size

Base for vertical posts for side mounting. Posts stand off from structure. Tube cannot pass through this clamp. Access to top fixing hole restricted, a threaded stud type bolt projected a maximum of 25 mm from structure needs to be fixed first.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Provides a structural base plate to a vertical post that is required to be side mounted. This clamp is virtually flush to structure it is being fixed to. The tube does not pass through the clamp.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Provides a structural base plate as the A14, should not be used for heavy duty applications.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

As the A16 but designed to take higher loads.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

126125

140135

140138

A ground socket that is cast into concrete and is flush with the finished ground level. Allow posts to be inserted and retained with a locking set screw. Posts can be easily removed at any time.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Provides a three way 90 degree corner joint. Used frequently for top rail 90 turn where a post is present. Compliment this with A20 for a lower rail. Also used for corner joints on structures such as work benches, tables etc.

A 90 degree corner joint, tube passes through the central hole. Used frequently for a lower rail(s). Often used in conjunction with the A18.

Provides the same function as the A20. However, this clamp can be retro fitted to an existing installation so disassembly is not required. The clamp can be split in half by removal of the pins and fitted to the existing structure.

Generally used in pairs (as shown). Allows angles between 90-180. Used to change direction of rails in the same plane. Requires a central tube at the point of angle change. Consider the A7 as an alternative for the angle change.

Used for a 90 degree connection of a lower rail(s) to an intermediate vertical post, the vertical post must remain continuous while the rail is joined in each side of the clamp. Usually complimented with the A4 when used for guardrailing.

Provides the same function as the A22. However, this clamp can be retro fitted to an existing installation so disassembly is not required. The clamp can be split in half by removal of the pins and fitted to the existing structure.

Variable angle clamp enables tubes to be connected between angles $30-45$ dgrees. Used for angled lower rail(s) joint to a vertical post on stairs. A3 can be used in association for top rail connection. A46 swivel clamp is an alternative.

Frequently used to tie uprights with horizontal tubes in three directions all at 90 degrees to the upright.

Frequently used in structures that have many uprights, such as racking. This clamp ties a centre upright, which passes through the central hole, with four horizontal tubes. All connections are at 90 degrees to each other.

Provides the same function as the A26. However, this clamp can be retro fitted to an existing installation so disassembly is not required. The clamp can be split in half by removal of the pins and fitted to the existing structure.

Swivel T clamp often used where stair case middle rails join level middle rails. The swivel joint is created using a rivet. Please note that swivel clamps should not be used to create entire structures as stability may not be sufficient.

Provides a 90 degree crossover joint. Used in guardrail installations. Rails are passed through in long lengths and joined using the A8 or A9. Can be used for connection of a horizontal racking member to a vertical support, garment rails etc.

Provides the same function as the A28. However, this clamp can be retro fitted to an existing installation so disassembly is not required. One side of the clamp can be split in half by removal of the pins and fitted to the existing structure.

Provides the same function as the A28. However, this clamp can accept two different sized diameter tubes.

This clamp is used on racking for the 90 degree connection of a verticab support to a horizontal load carrying rail. The rear outlet is available for a horizontal tie across the section.

Offset handrail spigot clamp accepts tube through top of the ' T ', the spigot inserts directly into another clamp. Used for off setting rail from a post, can be rotated through 360 degree. Used with A6 and A2. Also use with A10 for wall mounted rail.

Used to carry handrails along walls or fix structures back to walls. Tube passes through in long lengths, can be joined using the A8 or A9. Can be slid down a post and used for connecting a kick plate. Also for fixing hoardings, signs etc.

Allows for fixing to various panels (such as wood) in order to create a flush fitting.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

$\begin{aligned} & \text { Tube } \\ & \text { size } \end{aligned}$	A	B	C	D	E	F
$5(A)=26.9 \mathrm{~mm}$ dia.	56	39	10	-	-	-
$6(B)=33.7 \mathrm{~mm}$ dia.	66	39	10	-	-	-
$7(C)=42.4 \mathrm{~mm} \mathrm{dia}$.	75	45	10	-	-	-
$8(\mathrm{D})=48.3 \mathrm{~mm}$ dia.	75	45	10	-	-	-
$9(E)=60.3 \mathrm{~mm}$ dia.		50	10	-	-	-

This is a part component of the A44. It can be used on it's own for the insertion of signs and hoardings within a tubular frame, the connection of chain and 'D' shackles and tensioning of yachting wire balustrades etc.

Often used to allow the fixing of boards which sit practically flush with the tube. **Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Tube size	A	B	C	D	E	F
$5(A)=26.9 \mathrm{~mm}$ dia.	112	38	10	-	-	-
$6(B)=33.7 \mathrm{~mm}$ dia.	123	43	10	-	-	-
$7(C)=42.4 \mathrm{~mm}$ dia.	134	47	10	-	-	-
$8(\mathrm{D})=48.3 \mathrm{~mm}$ dia.	142	51	10	-	-	-
$9(E)=60.3 \mathrm{~mm}$ dia.	160	56	10	-	-	-

Similar to the A36 but with two eyelets. This is a part component of the A46.

Similar to the A38 but the two eyelets are at 90 degrees. This is a part component of the A48.

Socket with single eye

Tube size	A	B	C	D
$5(A)=26.9 \mathrm{~mm}$ dia.	61	25	10	12
$6(B)=33.7 \mathrm{~mm}$ dia.	61	25	10	12
$7(C)=42.4 \mathrm{~mm}$ dia.	70	25	10	12
$8(\mathrm{D})=48.3 \mathrm{~mm}$ dia.	77	25	10	12
$9(E)=60.3 \mathrm{~mm}$ dia.	94	36	10	12

Tube
size

$5(A)=26.9 \mathrm{~mm}$ dia
$6(B)=33.7 \mathrm{~mm}$ dia.
$7(C)=42.4 \mathrm{~mm}$ dia.
$8(D)=48.3 \mathrm{~mm}$ dia.
$9(E)=60.3 \mathrm{~mm}$ dia.

A B C
$3425 \quad 56$
$36 \quad 25 \quad 66$
$45 \quad 25 \quad 75$
$\begin{array}{lll}53 & 25 & 75\end{array}$
$\begin{array}{lll}58 & 36 & 100\end{array}$

A flexible variable angle connector. Used for an angled top rail connection to a post. Use if the angle required is not known. Also used as bracing struts for racking etc. Reducing combinations are available throughout the size range.

A flexible variable connection used for an angled lower rail(s) joint to a post. Changes horizontal rails to angled rails at top of ramps/stairs. Also as bracing struts for racking. Reducing combinations available throughout the size range.

Tube size	A	B	C	D	E	F
$5(\mathrm{~A})=26.9 \mathrm{~mm}$ dia.	25	61	99	-	-	-
$6(B)=33.7 \mathrm{~mm} \mathrm{dia}$.	25	61	107	-	-	-
$7(C)=42.4 \mathrm{~mm} \mathrm{dia}$.	25	70	118	-	-	
$8(\mathrm{D})=48.3 \mathrm{~mm}$ dia.	25	78	132	-	-	
			-	-	-	

A 90 degree flexible variable angled connector for posts on a corner. Changes horizontal rails to angled rails, at the top of a ramp/stairs. Use as bracing struts for racking etc. Reducing combinations available throughout the size range.

One
size

40	84	116	54	12	48	
		-	-	-	-	
		-	-	-	-	
		-	-	-	-	
			-	-		

A part component of the A52. Used on it's own it is ideal for a wall fixing for a chain attachment with a 'D' shackle. Can be used to take steel straining wires etc. Can be fixed to floor to provide fixing point for mesh panels/kick plates.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Used for an angled wall fixing plate or strut for added strengthening of a post. Not to be used as an angled base plate. Consider the G12. Alternatively use A12 and bend the vertical tube to the upright position.
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

A54

Commonly used to create roof structures in association with the A56. The tube cannot be joined within the fitting.

Commonly used to create roof structures in association with the A54. The tube cannot be joined within the fitting.

Used for the added support of a clamp that may be subject to severe loading, in excess of the maximum permitted slip load of it's socket set screw, on racking etc. Can support another clamp, which doesn't have it's socket screw tightened.

Used in conjunction with the A62 for a gate hinge assembly. Consider the Lockinex ready made self closing gate and posts for an alternative.

Used in conjunction with the A60 for a gate hinge assembly. Consider the Lockinex ready made self closing gate and posts for an alternative.

This clamp is generally used on a vertical post where chain is connected for an access opening in a guardrail. The chain is easily removed from the A64, use an A36 and a 'D' shackle for the opposite end connection.

Tube size	A	B	C	D	E	F
$5(A)=26.9 \mathrm{~mm}$ dia.	35	27	27	27	-	-
$6(B)=33.7 \mathrm{~mm}$ dia.	42	34	34	34	-	-
$7(C)=42.4 \mathrm{~mm} \mathrm{dia}$.	50	42	42	42	-	-
$8(\mathrm{D})=48.3 \mathrm{~mm}$ dia.	56	48	48	48	-	-
$9(E)=60.3 \mathrm{~mm}$ dia.	-	-	-	-	-	-

This clamp can be added to an existing structure. It provides a 90 degree crossover connection. This product may be supplied as a mild steel manufactured item, or cast iron. This is dependant on availability.

Used on asphalt roofs to provide a rain shield. Slides down the post over the A12 base flange. Once installed a silicone seal should be made between the tube circumference and the top of the cowling. Made from spun steel.

These plastic caps are used to plug the ends of the tubing. Once in position they are extremely difficult to remove.

These galvanised caps are used to plug the ends of the tubing.

Used to retain mesh panels within a guardrail. Used without the 'horseshoe' end they can secure other types of infill with a maximum thickness of 10 mm , such as perspex/plywood. Can be added to an existing structure. Space 450 mm apart.
size
$5(A)=26.9 \mathrm{~mm}$ dia.

68	58	-	-	-	-
71	61	-	-	-	-
75	65	-	-	-	-
78	68	-	-	-	-
76	66	-	-	-	-

	A72

Adjustable

Tube
size
$5(A)=26.9 \mathrm{~mm}$ dia.
$6(B)=33.7 \mathrm{~mm}$ dia.
$7(C)=42.4 \mathrm{~mm}$ dia.
$8(D)=48.3 \mathrm{~mm}$ dia.
$9(E)=60.3 \mathrm{~mm}$ dia.

Used to retain mesh panels within a guardrail. Used without the 'horseshoe' end they can secure other types of infill with a maximum thickness of 10 mm , such as perspex/plywood. Can be added to an existing structure. Space 450 mm apart.

See A50 for plate size.

Used to retain mesh panels to the floor.
Position at no more than 450 mm apart.

A74-Ratchet

A76 Allen Key

Allen key available in two sizes (6 mm and 8 mm).

Variable angle clamp, tubes can be connected between angles of 30 to 60 degrees. Use for an angled top rail joint to vertical post on stairs. Used in conjunction with A23 for the lower rail(s). Can be used for diagonal braces for racking etc.

Variable angle clamp, tubes can be connected between angles of 11 to 30 degrees. Use for an angled top rail joint to vertical post on stairs. Used in conjunction with G23 for the lower rail(s). Can be used for diagonal braces for racking etc.

Used for the joint between the top rail rail and vertical post. Allows tubes to be joined in the top part of the ' T '. Use the G22 to compliment this for the lower rail(s).

Used for the joint between the top rail rail and vertical post. Allows tubes to be joined in the top part of the 'T'. Use the G23 or A46 to compliment this for the lower rail(s).

30° to 45 Adjustment
Used for the joint between the top rail rail and vertical post. Allows tubes to be joined in the top part of the 'T'. Use the G24 or A46 to compliment this for the lower rail(s).

Two tubes can be joined to create an incline of 11-30 degrees. Joins the angled rail from a ramp or steps to a vertical post on a landing. Starts an angled rail from top of a first post.

Two tubes can be joined to create an incline of 30-45 degrees. Joins the angled rail from a ramp or steps to a vertical post on a landing. Starts an angled rail from top of a first post.

Two tubes can be joined with an angle range between 15-60 degrees. Joins the angled rail from a ramp or steps to level rails on a landing. Starts an angled rail from top of a first post. Can be used for obtuse angle change in a handrail.

Two tubes can be joined with an angle range between 11-30 degrees. Joins the angled rail from a ramp or steps to level rails on a landing. Starts an angled rail from top of a first post. Can be used for obtuse angle change in a handrail.

Provides a structural base plate for the vertical post. Allows 11-30 degree incline. Due to the design, this base plate can only be fixed down with the fixing holes perpendicular to the applied load (i.e in line with the rails).
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Provides a structural base plate for the vertical post. Allows 30-45 degree incline. Due to the design, this base plate can only be fixed down with the fixing holes perpendicular to the applied load (i.e in line with the rails).
**Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Provides a structural base plate for the vertical post. Due to the design, this base plate can only be fixed down with the fixing holes in line with the applied load (i.e. 90 to the rails). **Procure product prior to pre-drilling holes in structures as some dimensions may vary.

Used for the connection of lower rail(s) to an intermediate vertical post, the verticle post must remain continuous while the rails are joined in each side of the clamp.
Complimented with the G 4 for the top rail connection.

Variable angle clamp enables tubes to be connected between angles 30-45 degrees. Used for angled lower rail(s) joint to a vertical post on stairs. A3/G01 or G07 can be used in association for top rail connection. A46 swivel clamp is an alternative.

90 degree corner $+30-45$ degree incline outlet. Used to form a left hand side outlet where the top rail changes from level to sloping.

90 degree corner $+30-45$ degree incline outlet. Used to form an outlet where the top rail changes from level to sloping. Consider the A25 as a cheaper alternative.

90 degree corner $+30-45$ degree incline outlet. Used to form an outlet where the mid rail changes from level to sloping. Consider the A27 as a cheaper alternative.

Much like the A28. Provides a 90 degree crossover joint. Used in guardrail installations. Rails are passed through in long lengths and joined using the A8 or A9. Due to the open top design, horizontal tube can simply be dropped in and secured rapidly.

Info Snippet

To comply with Building Regulations for Access Ramps serving Public Buildings consider our Ramp Handrail System (DDA Compliant). Details can be found on our web site www.lockinex.com

The pictures show installations of the Lockinex Ramp Handrail System. The "Offset" Handrail is the key feature which complies with current Building Regulations.

Guidelines for loading details.

Guardrails \& Handrails Key Clamp Load Chart

Notes

360 Newtons per metre run $(\mathrm{N} / \mathrm{m})$	Industrial use-non emergency
740 Newtons per metre run $(\mathrm{N} / \mathrm{m})$	Commercial use
1500 Newtons per metre run $(\mathrm{N} / \mathrm{m})$	Retail/public access
These loads are as specified in BS 6180:2011	
All tube is manufactured to BS EN 10255.	

Horizontal rails are the same diameter as the upright posts and manufactured to BS EN 10255.
The table is based on the maximum permissable bending moment of the tube.
The figures shown in brackets are the required anchor pull out loads for the bay size indicated after all reduction factors have been applied.

Design loads stated in BS 6180:2011, BS 7818, BS 4592-0:2006+A1:2012 \& BS EN ISO 14122-3:2001.
The bay sizes are based on using the Lockinex A-12 base plate which is fixed with the fixing down bolts in line with the applied load.

Tube Size	Size 6 (Wall Thickness 3.2 mm)	Size 7 (Wall Thickness 3.2 mm)	Size 7 (Wall Thickness 4mm)	Size 8 (Wall Thickness 3.2 mm)	Size 8 (Wall Thickness 4mm)	Size 8 (Wall Thickness 5 mm)	Size 9 (Wall Thickness 3.6 mm)	Size 9 (Wall Thickness 4.5 mm)
Design Load Criteria	Upright Height 900mm							
360 N/m	815 mm (4.44kN)	$\begin{aligned} & 1368 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1596 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1826 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 2583 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 3051 \mathrm{~mm} \\ & (12.90 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 3266 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 3855 \mathrm{~mm} \\ & (14.75 \mathrm{kN}) \end{aligned}$
740 N/m	$\begin{aligned} & 396 \mathrm{~mm} \\ & (4.44 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 667 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 777 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 890 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 1256 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 2230 \mathrm{~mm} \\ & (19.36 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1587 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1875 \mathrm{~mm} \\ & (14.75 \mathrm{kN}) \end{aligned}$
1500 N/m	$\begin{gathered} 194 \mathrm{~mm} \\ (4.44 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 330 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 382 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 438 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 621 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 1099 \mathrm{~mm} \\ (19.36 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 785 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 924 \mathrm{~mm} \\ (14.75 \mathrm{kN}) \end{gathered}$
Design Load Criteria	Upright Height 1000 mm							
360 N/m	733 mm (4.44 kN)	$\begin{aligned} & 1231 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	1434 mm (7.60kN)	$\begin{aligned} & 1646 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 2327 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 2931 \mathrm{~mm} \\ (13.76 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & \text { 2938mm } \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 3471 \mathrm{~mm} \\ & (14.75 \mathrm{kN}) \end{aligned}$
740 N/m	$\begin{aligned} & 358 \mathrm{~mm} \\ & (4.44 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 598 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 699 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 802 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1132 \mathrm{~mm} \\ & (10.92 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 2005 \mathrm{~mm} \\ (19.36 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 1431 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 1689 \mathrm{~mm} \\ (14.75 \mathrm{kN}) \end{gathered}$
1500 N/m	$\begin{aligned} & 177 \mathrm{~mm} \\ & (4.44 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 295 \mathrm{~mm} \\ (6.52 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 346 \mathrm{~mm} \\ (7.60 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 394 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 559 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 991 \mathrm{~mm} \\ (19.36 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 704 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 832 \mathrm{~mm} \\ (14.75 \mathrm{kN}) \end{gathered}$
Design Load Criteria	Upright Height 1100 mm							
360 N/m	$\begin{aligned} & 667 \mathrm{~mm} \\ & (4.44 \mathrm{kN}) \end{aligned}$	1121 mm (6.52kN)	1304 mm (7.60kN)	$\begin{aligned} & 1495 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 2115 \mathrm{~mm} \\ & (10.92 \mathrm{kN}) \end{aligned}$	$\underset{(14.35 \mathrm{kN})}{2777 \mathrm{~mm}}$	2672 mm (13.8kN)	$\begin{aligned} & 3156 \mathrm{~mm} \\ & (14.75 \mathrm{kN}) \end{aligned}$
740 N/m	$\begin{aligned} & 326 \mathrm{~mm} \\ & (4.44 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 546 \mathrm{~mm} \\ & (6.52 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 636 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 727 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1027 \mathrm{~mm} \\ & (10.92 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 1823 \mathrm{~mm} \\ (19.36 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 1299 \mathrm{~mm} \\ & (13.8 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 1536 \mathrm{~mm} \\ & (14.75 \mathrm{kN}) \end{aligned}$
1500 N/m	162 mm (4.44kN)	$\begin{gathered} 268 \mathrm{~mm} \\ (6.52 \mathrm{kN}) \end{gathered}$	$\begin{aligned} & 312 \mathrm{~mm} \\ & (7.60 \mathrm{kN}) \end{aligned}$	$\begin{aligned} & 358 \mathrm{~mm} \\ & (7.73 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 508 \mathrm{~mm} \\ (10.92 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 899 \mathrm{~mm} \\ (19.36 \mathrm{kN}) \end{gathered}$	640 mm (13.8kN)	$\begin{gathered} 758 \mathrm{~mm} \\ (14.75 \mathrm{kN}) \end{gathered}$

Composition, manufacture

Every clamp is subjected to a heat treatment process that gives the clamps their malleability and inherit strength. Once this process is completed the clamps are then shot blasted to provide a clean surface which is free from burrs and sharp edges. The clamps are then galvanised to BS EN 1461:2009 to ensure that they resist corrosion and will provide a strong durable joint for many years ahead. All clamps are supplied completely rust proofed and extra strong case hardened allen screws. Clamps and tubing can also be supplied polyester powder coated from a wide range of assorted colours.

Design Considerations

When tightened to 4.1 kg ($29 \mathrm{ft} / \mathrm{lb}$) a slip load of 900 kg can be obtained on each screw.

Additional clamps can be installed directly under the initial load bearing clamp to increase loading capacity further. The ratchet spanner (Ref A74) should be used to tighten the screws to the required torque.

SITEWORK

Installation
Our Lockinex Key Clamps are fast and easy to erect, they need no special skills or tools. Tube bending can be eliminated by use of the varied and flexible range of clamps that are available. The positive locking of the allen screw gives rigid quickly made connections which, if required, allow for easy dismantling or modifications. Where access could be difficult for a fabricated structure the fittings and tubing can be packed for easy conveyance to the most difficult locations.

SUPPLY

Availability Direct from the company
Delivery A complete nationwide service is provided

SERVICES

Design and estimating

A complete service, including calculations, where necessary, is available to comply with the requirements of British Standards and Health \& Safety Executive recommendations.

Please contact our design department for any advice you may require.

Sales and technical

Please contact the company at the address shown

Dimensions

Dimensions are given for each type of clamp on the preceding pages. They are supplied in a range of sizes suitable for tubes from 26.9 mm to 60.3 mm outside diameter.

